
- .  

SECOND QUARTERLY PROGRESS REPORT 

14 August 1964 to 14 November 1964 

Contmct NAS 8-1 1204 

FEASIBILITY STUDY FOR DEVELOPMENT 

OF A HYPERVELOttTY G ON 

for 

Ndonal Aeronautics and Space Administration 
George C ,  Marshall Space Flight Center 

8December 1964 

MB-R-64/86 

ME ASS0 CIATES 
San Ramon 

{nem $an Fmncisco? 
Caii\Pornia 
837-720 1 



I, ? NTRODUCTION 

I 

The work s%ternenf for the second quarter of this contract specified s i x  
tasks of two g e m 1  kinds: t h e  concerned with answering some remaining questictm 
about the operotion of h rcrij gun and those contented w i h  setting up an auxiliary 
field sptem, The kllowing sections describe our prqjress in carrying out these tasb. 

no VOLTAGE MEASUREMENTS ACROSS THE MUZZLE AN 0 BREECH 

The voltage differences shown in Figure 1 are related in the following 
way: 

where1.i~ the total cuwmf thmu~h the arc and 
between the beech and the arc By decomposing 1 . . 

we have: 

ts the inductance included 

where L’is the inductance per unit length of fhe roils. e which i s  the 
voltage acmss %e arc, may be measured anywhere across the roils in fronf of 
the arc,) 

( 

The following actual measurement of 1, L! c/s t/m , and 2 taken 
QP peak current ( 2  4) were consident wltk equation (23: 

yj = 7 0 0 v  

% = 

The btal electric pwer  into the gun i s  g-Z- Of this, IA z i s  
Irretrievably dissipcrfed in the arc, L f1 goes into increasing the magnetic field 
in the region befween the breech and the arc, ’2 ‘ 2 into creating 
Geld in the region being uncovered by the mtian of the arc, and 5 L ’I2< 
iniro the kinetic energy of the me-projectile system, fhe fraction v,,&, is, 
therefore, a minimum maswe of the anergy ineffictency of the gun, 



n 

i 
t 
i 



In predous experiments with no projectile, V, /Vb appenred to be 
g w e t  than 90% indicating a very poor energy efficiency of the gun, During 
this quartet, the experiment was repeated with - a projectile (a 1/8 inch nyfm 
cube), and V,,,/Vb was found to be roughiy 609/0 during cslmsf. the entire 
acceleration, Since the magnetic field energy is always at least as great as the 
arc-projectile kinetic energy, the net energy efficiency must be less than half the 
complsment of 60%, i *eo lets than 28%. The gross energy sfficiancy computed 
from the projectile moss and velocity und the condenser bank capcrcfty and voltage 
wos 2,0% -less than the 20?& upper limit on the gun's efficiency, os it must be, 

t i l  VARIATION OF BARREL CROSS-SECT~ON_ 

At the last planning meting, we made the conjecture &.hat the mors-input 
would be pport'ional to the gop mricoce width of the mils, and that, since the 
total h n t z  bce ,  for the magnetic field constan?, i s  proportional to the CIPSL- 
sectional area of the batrrel, the effect of the mass-input would be inversely pro- 
portional to the width of the k e i .  Experiments were carried out with l/8, 
1/16, and 1/32 inch square and 5/32 in& round barrels to test Phis amjecttm, Tho 
result wos that the effect of mass-input m<ly have been reduced by lcager banels, 
JO fhat the velocity ob the free QTC was enhanced (up to 16 lun/sec at 1 atrn,), but, 
for t)N correspondingly heavier projectile the velocltles were roughly the same 
[ctbout 5.5 km/sec), the only improvement being in energy efficiency., 

This may have m e  possible use in a two-sfagle dmg-operoted device, In 
which the vefocity of the second-stage free arc must be greater h n  that of the first. 

IV. VOLTAGE DROP MEASUREMENTS OF TO TAL RAIL CURREN T 

Six attempts were made to measure the total arrent info the raiis by 
recording the voltage drop along a segment of the input l e d  fa the gun, (The method 
we usually use is magnetic ptck-up,) Unfor~unatdy, the rewlts were rendered un- 
intelligible by what seem f . ~  b inductive effects. These arose horn the close p x l m l t y  
of the input laad to tfie gun, fibs arrangement WQS necersary beccruse of the short, 
thick leads, for low ifiductance, between the secondary of the ~ T C I R S ~ O ~  und the gun. 
Tho circuit used (Figure 2) w a  desjgned to ocmcel out the inductive affects due to the 
uniform field of the inpui leads; howwer, it could not balance the n o n l t n i h n  fields 
of the gun and secundary output teminafs, 
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v o  AUXILIARY FIELD RAlt GUN SYSTEM 

J. 

i 

In accordance with the planning meeting Qw the second quarter, we have 
assernbled and made peiiminclty tests on an auxiliary field rail gun system. (See 
figwe 3, The conddemffolls twding PO this appraach are discussed in "Study 
of a Rail-Type Hypervelocity F'miectile Accefwator" by D,E, Brast and D.R.Suwle 
in the RoceediRgs of the Seventh Hypervelocify Impact Symposiu 
M ~ v .  17-19,1964, AFSC, USMRL, USNRL). 

Taapa, 
Cow aPfwhed, 

In addit's.? to olredy existing equipment, phe following weat d e  to complete 
the system: 

1. 
2. 
3, 
4, 
5. 

a condenser bank far driving the auxiliary fieid turns 
a circuit fix charging both bnks in parallel 
a triggered spark gap for dischatging the new bank 
an impedance matching transfarmer fw the auxiliary field circuit 
a rail gun with auxiiiary field turns 

The R ~ W  condenser bank consists of ten l 4 y M ,  20 kv capacitors of the same 
type as used in the old bonk [Seinpn0, t y p  EDC, Class B). (in addition to these, 
an eleventh capacitor was bought to replace a da+ one in the old bank). These 
ten capacihs were stropped together in pairs and each pair piaced on o separate, four 
wheel dolly, Each capacitor i s  connected to the spark gap switch by separute cwxia i  
cabfes, These provisions will at!ow h r  easy moving of a pair of capacitors from fhe 
auxiliary to :he gun clrcuif or viceverso as the need crriws, 

A remote confrol charging and automatic cmebm mchanism was aitached 
to the RW bank. The charging leads are connected to the same power supply as 
the old bank so that bo& banks may be chcrged in parallel, each being disconnected 
from the charging supply QS it mches the desired voltage. The banks of0 
discharged through thefr respective spark gaps in a controlId time sequence povided 
by an Abtronix delay chassis. We tested this arrcmgpment and found it reliable. 

The gun ifself, shown in FSgura 4, is of the usual sandwich constnrction. The 
steel dowel plns gite !ai-eral support, and the ~ h o t e  assembly is  clamped fiam above 
and betow by two one-inch thick melomine-fib;.+is blocks (not shown) drawn 
tqether on each side of the gun by 3/S inch high-$eensile-shength steel bolfs, 
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The ~ W O  w x i i ~ w y  turns c r ~  comectsd a: the cuzzle ef ihe gun in pcmltel 
to #he seconhry ~ S F ~ ~ G C ~ S  of m e  i-mnsformner. The raiis ore connected at the 
breech of the gun to the secondary of the other :rcnsformp The field produced in 
the roil gop by the aruxiiiary turns i s  about 3 gauss/arnp, For modest auxiliary a d  
rail currents of IOOk amps, the resirkiq Lsrentz force will accelerate Q 5 mg 
pl.ojiBC)ile to 30 klYe/SeC in 1o/uSC. 

Refiminary tests with a profofype Q$ the gun shown in Figure 4 were made 
with only OW capacitor in the rcif c?rcvit, t2’ith Q much lower auxiliary field than 
weutd be produced in the present gun, a velocity of abaut 2 km,fscac was achieved, 

Praiect Engineer 
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SWDY OF A RAIL-TYPE 
MHD W ~ L O C I M  PROJECTILE ACCELERATOR 

D. E. h t  
D. R. Sawlm 
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MHO RAIL-TYPE ACCELERATOR 

ABSTRACT 

A mil gun with on r l u h i c  orc QI the amotum wms used to 
occol.mte a 2.4 milligran nylon +are to o volocity of 6.0 h / k e  
and 5 and 31 milligram nylon cub.r )o volocltim of from 5 to 6 h/sec. 
The energy source was o 28 k joule, 1 4 2 ~ M  d e r r u r  bonk. Tho 
authon describe tho systarn usod, amlp  tho b t r  b ond tho 
limiting phenomow of ion _ _ _  rprttoring ond high%Wdcin hmatirp, and 
propso o slow auxiliary fiold QI o nmrnr of ovuoamii.19 t h o  
Iimitotim. 



MHD RAIL-MPE ACCELERATOR 

SYMBOLS 

N irof thoordrrof 

6( r o r m r t h i ~ o f t t w ~ o f  

t time 

Y velocity of he at 

v volvnwdfntrgrrrtkrr 



MHD RAIL-NE ACCELERATOR 

INTROWCTION 

. .  

The defining features of a mil gun are (See Figure 1) a pair of 
conducting mils and across th.m a conducting armature. Electric 
curront i s  passed t k g h  the mils and armature so that the magnetic 
field produced by the current in the mils (and porribly in anciliory field 
co i l s )  interacts w i th  the current in the armature. The resulting twsntz 
force (jrB) ten& to accelemte the omaturo awoy frorn the end of the 
mils at which the cumt  i s  inhpbced. 

ctically, two k i d  
soi id axductom. 

armature hovo boon uud, oloctric QC 3 3  In molt projectile accel.ro)on, t)H, 
projectile i s  itself conductive and wwes os the armature. In our gun, 
tho projectile i s  nonc o d g t i v e  (usually nylon) and the atmatwo that 
drives it i s  an arc plasma. This circumvents the problem of ohmic 
hoating in the ppjectile. 

By t h i s  means, we have succeeded in accelemtirp 2.4 milligmm 
nylon spheres to velocities of 6.0 km/sec and 5 and 31 m i l l i g m  nylon 
cubes to velocities'of about 5 or 6 h/k. 

The system usod consists of o 28 k joule, 142yfd codenmr 
bank, which i s  disc- by a himered spark 9op either directly into 
the gun or into an impedance motchi- plso tmnsfonner giving peak 
curmnts up to 700 k amp at tinging frequencies as high o 25 k c 
Tho arc i s  initioted by a mall bit of aluminum foil behind b pojocti lo 
and tmvels the entire length of tho gun bring the first half-cycto of 
the discharge, When a prim tmnsfomer i s  used, about throe fourths of 
the bank energy i s  dissipated in that time. Of th. totul bonk e-, 
howvar, at mort about 3% goas into the kinetic anergy of tho 
projectile. 

Tho gun itself is unywhue fmn throe to oight inchos or 10 in 
Ierpth and consists of a pair of mota1 rails, rnualfy copper, wrrdwiched 
between two insulating slabs. A cubic-pojeetilo can be fitted snugly 
into the resulting wa-e b a d .  Alternativoly, a cylinctical baml can 
be fabricated by machining or molding and a q h r i c o l  p j o c t i l e  fitted 
to it. 

Routine diogmtics include magnetic flux loop vory clow to the 
of the orc, a phomloctric mun le -w tcb r  h l  to record the 
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MHO RAIL-TYPE ACCELERATOR 

to record the oppeamnce of the lurninovs arc plasma at the muzzle 
(this always coiwid s w i h  the current front or determined by the flux 

current, ond twosit time and cmm depth measurements to detmmine 
velocity Occcnionally, we hove measured directly the voltuge acrou 
the muzzle and btecch of the gun to determine the*resirtive voltoge of 
the arc (about 200 v) and the mte of change of flux. 

loop at the muzzle)  d o flux loop to record the total instontoneour 

In the rail gun acceleration of plasmas, velocities upmrrdr of 
100 km/sec h a v e  been ochievad'f20fkond, one -Id, with some 
modesty, hope to use the same techniques and mors energy to achieve 
somewhat lower velocities for small projectiles. However, bocouse 
even a 1 mg nylon sphere has on orsol mass hrmity io6 timer ttmt of 
mil gun plasma bodies (IO p / m 2  v o w s  1oy(In/cm2) the mognetic 
pressurn required to produce the same acceluqtion in the proiectiles 
as in the plomos i s  correspondingly higher. Smallor accdemtiorrr of 
1- duration over greater distance l e d  to 
energy into unusable rnoenetic fields due to laterul difhsion a d  forward 
expansion and into ~ Q I I  sputterad off the mils by current caryirrg ions, 
(2) heating of even a nonconducting projectile bx the arc through 
t h l  mnduction, (3) such a loqp impedance ttmt a second orc 
strikes at he breech even before flnt one machsr the muzzle. 

( I )  gleatef loss of 

The magnetic fields needed for large accelerations om of the 
arch of a megogauu. Ths ohmic heat per unit volume probced by 
such high fields (turnad on fort enough to ba contained by good 
cond~ctws) i s  wfficient to melt ttm current carrying portion of the mils? 
and momentum then goes into the molten mil material. Alfo the 
pressures are so high that the mils suffer plastic flow. 

The way out of the dilemma seams to us to be o slow auxiliary 
field. This, of course, wostes mors energy in the magnetic f ldd cuy) 
b not decrscac t)n? force on the oils, but i t  does etilninote 
sputteting ond .kif  heoting 

The following is a mom dota0iI.d doscriptior, ond anolysir of th. 
operation of the mil gun including sane mlwant acperimental rasults. 



MHD RAIL-WPE ACCELERATOR 

OPERATION Of THE RAIL GUN 

n~ ~ormtz  farce on on Qc in a mil gun withdut on auxiliQy 
fioldconalwoyrbemittena $L'xa ,where 1 i s h  
irr#aniorKtcnn total current in tho mils, and f' is somo inlrctonco p u  
unit tongth. The total momattun pducad by this force will ))wn be 
-[$f 'la ,'I + . If L' is m l y  constant in time, and if  we know its 
volue, we hcrve a v q  useful otprmsion for tho momentum in t.rmr of 
Q ~ I  easily m d  quantity, I . In genom1 this w i l l  not be the caw, 
because L ' 
except in special cases, fix exanple, tho cam of infinitdy thin w i n  
r a i l s ,  t h i s  curnnt distribution wilt vary with t h e  in an unknown wary. 

is  dependent cm tho curront distribution in the mils, and, 

Fortunately, the mil gun contidored h.rs falls u d o r  on of t h e  
special cqes, at leost to on approximation, and we can get an estimatm 
of L' by means of the MOXWOII rtrr#r t o m ,  PP - + l ~ P i  
the unit tensor) in the following way. 

(I is 

The LCWQWZ force OII an arbitrary volume, V ,  is given by 

J 



MHD RAIL-NE ACCELERATOR 

The f m w d  force on iho mils d& h gi- by 

In dw casa of an atknutkrlly symmdrtaol dischmgo In a 



MHD RAIL-TYPE ACCELERATOR 

gmetr ical  e x t e r m 1  inductance per unit let+, indepedmt of the 
d i a l  distribution of the curront in the electrodas. 

The same result holds for tho p v ' k s l y  m m t i d  spociol cam 
of infinitely fine wim mils and for the coso of infinite conbctivity. 
This can be derived fmm Equation (4) w from the amanmtiorr of 
a d  haadoy's Low. Both of those der ivat im depmd on th. fact hat, 
in t h e  special corns, we con define a unique mopetic flux ))r#rgh 
tho circuit. 

In the case of interest, the disthargo is not azimuthally 
symmetricol, the ccou sectional size of the mils i s  compurable to the 
size of the gap so that the mils connot be considerod infinitely thin, 
and the electricol &in depth in the mils for typical tmmit times is 
conrideruble compared to ttm other dimemiom so h a t  the mils connot 
offhand be considered of inf inih conductivity. Noor ttm QC, Iinos of 
induction which cut tho mils bacaae of hit finite conductivity hove 
components bth normal to tb surfoce of the mils ond a l q  the 
I - direction 
lorger be negligible. 

Therefore, ttm second integral in Equation (5) moy no 

In order to estimate t h i s  integml, we w i n  make use of he fact 
that, away ffom the arc, only tho current in the arc and not the current 
in the rails contributes to .Is; . 
proportiom1 to tho inverse square dirtonce from the arc, d/zt , and 
to the s i n e  of the angle betwxmn the rail-rurfaco normal and the rodius 
vector from the wrface to tho center of the arc. This  sine i s  approx- 
imately ~ / X Z  so thot ,A8 i s  proportional io r/x* At ogiven 
dirtonce, I, f r o m  the arc the width of the orea on the mils cut by & 
will be the skin depth, h , cewsponding )O the time for t)n arc to 
tmvel that dirtonce. Letting Y be the velocity of the arc ond cr tho 
conductivity of h e  mils, we hove 

will ,  therefore, be mughly 

If we le t  the first int-ral in Equation (5) be 4 L 'I' Ond tho second 
integral o correction to it, thon, whatever tho exact value of L' is, 
it w i l l  be roughly true h t  L'*/, .  and mar the gap, I,&/ -1 X3 . 



MHO RAIL-NPL ACCELERATOR 

Sut#ti)uting them expessiorm into Equation (6), we hove 

Putting in the typical values 

ISm 4 =  
v =  5w= 

r =  5.8 x ld mho/m for copper 

wahove - 0.04. 

This i s  he ordm of magnitude of the fmctional negative correction that 
will hove to be mode in the exposion for the Loren- force derived 
frwn the first i n tqp l  of Equation (5). Frun the above calculation, we 
808 that# for ooppa, i t  i s  puhqsunoll .rrough to be nogkted. b 
8-1 w i h  a d c t i v i t y  of, my8 5.0 x 106 mho/m, ttw correction is 
about 0.12, pahap I q e  omu#i to bo conridecoble. 

As long QI th is cornction is not too lorgo, the skin depth at / 
will be anall enough rn hot we can get a fair oppmximatign t o i ’  fwn 
th. hi& frwpency inbctonce per unit I-. Even fordug , t h i s  
muy s t i l l  be somewhot irmocwmte because the rurfoccl current distri- 
bution in this problem is not exactly that of the steady state alternating 
currclnt pblom. Howevu, when it is occumta enough, the high 
fraquency inductance por unit longth con be mscsurd directly in a 
ringing circuit or i n d i k t l y  
Onalog. 

NQN of a t u l l o - d i m e n i ~ ~ l  electrical 

lorummariu, h h h f W C A o n t h r , o t c i s g i v . r r b y  

whom L’ 

orxi C; (--&--) 
betwoen the skin &pth noor the orc )O the wi& of the gap. 

is rowghly tho high4mqu.ny induc&e p u  unlt I q t h  
i s  a nogative carrution of the ~rd. r  of the ratio . 

T 3  
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Mass-Input Limitation On The Projectite Velocity 

The momentum as calculated frwn Equation (7) using the 
measured va~ues of L' and Z it ac tva~~y  dxwt three t o m  ~ t m r  
than the mass of the projectile times i t s  measured velocity.. h a 
tentutive ezplanotion for h i s  we ppored a mas-input to the orc 
pmportional to the toto1 charge though the arc. This is the rwt of 
thing one would expect if qwttering were toking place.9 

For experiments without an impedoncs mcitching tmnsfonner, the 
current hod the form of o sIi$tIy dOmped.sins m e ,  Putting I, r ' m  ~7 

for the cuntnt, M for the mass of the projectile, and n, for the moss- 
inpit per unit charge, we wt the following oxpmsion for velocity 

by equating the momentum of tho pmiectile o d  a c  plwna to the 
momanturn calculahd from Equation (7). 

Figure 2 shows a plot of pcmition v w s  time b a d  on 
Equation (8)- The curve was mode to fit h g h  a set of experimental 
points by retting " x  = 4.6 Cu atomsfion. In order to show the 
seriousness of imludirp mass input, onother CUrve wi th  fir = 0 was mod. 
to f i t  through ttw exparimentoI point at 30/r sac by settino L' quai 
to about one-third its meowred value. It i s  M l y  possible that the 
memsursment of L' could be so much in error, but, evon if i t  w e ,  
the CUNO for mg = 0 hos the wrong shape. It, therefon, seems that 
phenomenologicolly, at least, a charge pportionol m - i n p t  
describes the situation. The following section indicates how the 
description may be more t)Km phunwnenological. 

Jon Sputteriq 

magnetic fields ( I @  to 106 gauss), the o~.ctron ~ n d  ion cyclotron 
frequencies and rodii w i l l  tn roughly 

~n the present mrlgs of t.mpmtwm (IO to I 00 ev&nd 

Pe - .oOolmm p,- - .01 mm 
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MHD RAIL-NPE ACCELERATOR 

Since these dii am much loss than ha inter-etecimcie spacing of 
1.5 mm, if the oiectron collision bquoncy for current ppbcing 
cellisions (efectmn-ion or oIect~onl#utrol) is much loss thon a/c 
which is p b a b l o ,  then tho QIC current w i l l  bo carrid prodominantly 
by O h m .  

Tho dircnpmcV 0.9 and 4.6 muy bo occarrrad fw by 
skin b t f n g ,  which m i d y  doos molt mil motorial and moy won 
onhoncm the rquttuing yield. lha noxt section d i m  this &t. 

Owirg tho -it of r(w mc d w n  tho mils, armr\t ad 
M c  field diffuse ink tho mil duo to tho flnitm oonbctivity of tho 
mti motorial. As wm wil l  h w ,  th. o v u q p  onwgy domity bp#itd 

o b t c  Wing in tho wkrr of tho OT Is oppojrimotely tho -tic 

k a t  content of t)lo mil motuial fmm its initial hmpuatum8 say, r w m  
tanpaturn, to iwt abovo its meltirp point, hen mil matuial will be 
m . 1 ~  in that Wion.4 si- ttmm is  o forwmd oomporrrrt of tho 
b t z  force on the mils ~WQT tho arc, this d t m n  matuial wil l  bo 
m i a d  f0rWp.d ocd will, timmfwe, dbtw to tho of tho arc- 
p i u t i l e  *. (Althou& hooting 4- in tho mils M i n d  tlw 
arc, t)l. b m t z  fato i s m ,  and h m l t m ~ i d  thaw wil l  
only k p-msmd ogoirrt h roils, not mid forword.) 

bnrity in h g o p .  If *is .nqy&mity i s  g r m m r h  h 
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IMPORTANT PHYSICAL CHARACERISTICS OF 
ELLMENTAL RAIL MATERIALS 

Total hwt 
content 2oDc 
ttuwgh M.P. 

Be 4 
C 6 
MI 12 
AI 13 
Ti 22 
V 23 
G 24 
F. 26 
co 27 
Ni 28 
cu 29 
zn 30 
Y 39 
t 40 
Nb 41 
Mo 42 
I& 44 
Rh 45 
Pd 46 

47 
72 

A0 
H# 
To 73 
W 74 
R. 75 
0 8  76 
!r 77 
Pt 78 
kr 79 

6.9 
p15.0 
1.9 
2.7 

2 6.0 
> 6.7 
>12.0 

9.2 
10.5 
9.2 
5.6 
2.1 

> 3.5 
> 5.1 

> 10.0 
211.0 
>10.0 
7 8.5 
6.0 

> 3.3 
>5.0 
11.0 

>12.0 
15.0 
1 1  . o  
I t  .o 
8.2 
5.4 

%If 
rpr-iq 
yield at 
200 .Vf 

a m u  
ion 
- 

1 1  
0.4 
0 
0 

1 1  
17 
37 
34 
39 
43 
61 
35 
24 
20 
20 
31 
38 
52 
98 
127 
33 
33 
28 
46 
54 
88 
97 
171 

E l a c t r i d  
Rmslstivity 

a- 
4.3 

4.6 
2.0 
3.2 

800 

25 
13 
10 
9.8 
7.8 
1.7 
5.8 

6!5 
39 
14 
5.7 
7.6 
4.5 
10.8 
1.59 
36 
12.4 
5.5 
19.1 
9.5 
5.3 
9.8 
2.2 

Tomile 

50 

30 
40 
100 
100 
60 
100 
100 
160 
70 
30 
20 
100 
50 
60 

100 
40 
40 
100 
lh 
200 

' 150 
150 

50 
20 

.. 

- 
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m 

&mity in the gap, 01 rtoted. For 

1.5 m, - I -  -- 

l h e o v ~ * c m ~ l o o w l y M n D d , o n d t h o  
axsequent results am only good toon oduofmqpilvd.. Th. actvol 
hooting will depend upon th. details of 60 current distribution in ho 
mils. Even so, one, cun see fiun h *le, that his is th. r*+t order 
of magnitude to melt the current cawyirrg part of the mil 

From flux loop dam, w, hovr, 0 f y p i ~ l  d u e  far t d IO/ sot. 
Th. concrponding electrical skin &ph i s  0.7 m, oryf tho thanno1 
skin depth is 0.03 mm. It warid, thefore, bo hpomfble for the h a t  
@empted to dissipate by corductlon during th. of ttm arc. Th. 

of the roils o f ~  th drot kon ))lis out. In coct, t# o 
s t 4  mil with 8 mil capper cldditlg, the .ntim 009p# tbco 
meltad in the region of hi&est c u r r ~ .  Tho total mount d cappot 
mel~overa6cmI.ngthhorammoffr#n0.1 to lgm.  Tonorm 
mill igram of this cmiod formnd aprttut tho projutile mould otoou11) 
for tho --input &ut. 



MHO RAIL-TYPE ACCOlEUATOR 

In oddition to plastic flow ot tho gap Mcoc., tho L#mtz 
haw caums gross motion of tho m i l s  in the lokml dinctiorr. This 

to r)H outside edg. of tho mils md bock. Sina tho mils O) nr tmid  
in this dimetion by bolts or s t d  dowd pitrr, hb m o t h  my'- p b i c  
flow of ttw mil arrund tho bolts. 

b.glra tQ occw aftu tho rhoclrwatm cnotdo, hgrpurclk. tmmls 



MHO RAI L-TYPE ACCELERATOR 

Experimental Rwlts 

Rail Motuiols 

Experiments with mils of 

which were designed to tmt the rprttering chamcteristicr of thsrcl 
metals, seemed meroly to show the strength and meltirp chamctdttics 
described earlier. An athmpt wos mad. to sopomta these c)#mcfer- 
istics by usirp u canpodto mil with o had core, in OIW of 
melamine fiberglass lunirmtm and of tool 8-1 in adtar, ord a 
cladding of the metal u n b r  cornidmation. We also umd a mil of mild 
steel with a cuppar edge ottochd by hard aoldorirg. Tho cloddirp 
hdrdqU8 8hoW.d h9 bOSt NWlb. 
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MHD RAIL-TYPE ACCELLMTOR 

cunwrt Variation 



MHD RAIL-TYPE ACCELERATOR 

A s low (ten millirecordk) WRiIiory mognetic field of the 
higherr pouiblc intensity should be used. 

Given the best mil material and the strongest  supporting 
structure, the energy density in the gap should be as high of possible 
w i h t  melting or spreading the mils. 
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CHAPTER I 

INTRODUCTION 

Current s t ruc tu ra l  design pract ice  c a l l s  f o r  decreasing s t ruc -  

tural thickness as a result of weight l imi ta t ions ;  as a consequence, 

many s t ruc tures  are permitted t o  buckle and are then used i n  the post- 

buckled state.  Members t h a t  previously served only i n  a nonstructural  

capacity are used t o  sus ta in  loads greater  than those predicted i n  the 

usual "Euler load" sense. In  addition, s t ruc tures  subjected t o  these 

high s t a t i c  loads are frequently expected t o  survive dynamic disturb- 

ances. This i s  pa r t i cu la r ly  t rue  i n  a i r c r a f t  and space s t ruc tures  where 

the s t i f f n e s s  and dynamic charac te r i s t ics  of a buckled rectangular panel 

have become important with increasing f l i g h t  speeds. The buckling of 
- _  

the  sk in  panels, whether caused by a i r  loads or by thermal expansion, 
- _-- 

w i l l  cause a marked reduction i n  the s t i f f n e s s  of the s t ruc ture .  The 

changes i n  frequencies and mode shapes t h a t  take place as  a result of 

thermal expansion a f f e c t  the various s t a t i c  and dynamic i n s t a b i l i t i e s  

considerably. The purpose of the present study i s  t o  determine the 

dynamic charac te r i s t ics ,  t h a t  i s ,  the na tura l  frequencies and mode 

shapes of v ibra t ion  of a rectangular p l a t e ,  i n  terms of a load para- 

meter both before and after buckling. 

- c_ -_ 

-_ ~- - 

The free vibrat ions of e l a s t i c  bodies or s t ruc tures  about 

the unbuckled equilibrium configuration have been studied extensively 

before.  The na tura l  frequency and the mode shape of vibrat ion a re  ob- 

ta ined from the solut ion of an eigenvalue problem. 

s t ruc ture  i s  f i r s t  preloaded s t a t i c a l l y ,  then the  r e su l t i ng  frequency 

of vibrat ion i s  increased by t ens i l e  stresses or forces  and decreased 

If such a body or 

-1- 
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by compressive forces.  

zero when the compressive force reaches t h e  buckling load. 

I n  the  case of compressive loading, it goes t o  

The most familiar example of such a problem i s  the  l a t e r a l  

v ibra t ion  of a simply supported bar which i s  a x i a l l y  loaded. 

of t h e  frequency of t he  v ibra t ion  is l i n e a r l y  re la ted  t o  the  axial 

force.  

of a clamped c i r cu la r  p l a t e  under uniform radial compressive forces.  

Massonnet(2) and L ~ r i e ( ~ )  have shown the  existence of an  intimate re- 

la t ionship  between normal vibrations and i n s t a b i l i t y .  

discussion can be found i n  t h e  book by Bolotin. (4 )  

the  framework of l i n e a r  t heo r i e s ,  whenever the  mode shape of buckling 

and of vibrat ion i n  the  presence of axial load are the  same, the  square 

of t h e  na tura l  frequency var ies  l i nea r ly  with increasing a x i a l  load 

u n t i l  it vanishes at t h e  corresponding buckling load. This property 

is of ten used t o  predict  t h e  buckling load by extrapolat ion of a few 

poin ts  obtained experimentally a t  r e l a t ive ly  low loads on the  frequency 

squared-load curve. 

The square 

Willers(’) has calculated the decrease i n  t he  na tura l  frequency 

A def in i t i ve  

In  general ,  within 

The buckling of a simply supported p l a t e  under edge compres- 

s ion was first  studied by Bryan(>) i n  1891. 

p l a t e s  t h a t  a r e  not simply supported have been invest igated extensively 

by Timoshenko. ( 6 )  

of l i n e a r  c l a s s i c a l  theory under the assumption t h a t  t h e  def lec t ion  of 

t h e  p l a t e  is s m a l l  i n  comparison w i t h  i t s  thickness; therefore  t h e  

solut ion appl ies  only t o  the  incipient s t a t e  of buckling. It is  ob- 

vious t h a t  the  l i n e a r  theory of plates  no longer appl ies  when the  be- 

havior of the  p l a t e  above the  buckling load  i s  t o  be investigated.  

The buckling loads f o r  

!These problems are a l l  solved within the  framework 
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A set of nonlinear d i f f e ren t i a l  equations f o r  plates  with 

la rge  deflections was introduced in  1910 by von K6,dn.  ( 7 )  

the nonlinearity of the  equations, there  e x i s t  r e l a t ive ly  f e w  exact 

solutions. However, various approximate solutions have been presented 

by Cox(8) and Timoshenko,(6) and a more accurate solution of t he  

problem of large deflections has been given by Marguerre. ( 9 )  

of Fourier s e r i e s  

large def lect ion equations of von Idrm6.n f o r  square plates .  

and Stoker (n'12) have used methods of perturbation, power series and 

asymptotic expansions t o  solve, i n  a very exhaustive manner, the  prob- 

l e m  of a simply supported circular  p l a t e  subjected t o  radial compressive 

loading. Alexeev, (I3) using a method of successive approximations, 

has obtained a solution f o r  the square p l a t e  buckling in to  both one 

buckle and two buckles. 

together with a minimum energy principle t o  obtain a sequence of solu- 

t i ons  with e r ro r  estimates f o r  the post-buckling behavior of p la tes .  

With the  exception of the  analysis of Alexeev,(13) a l l  of the  above 

s tudies  of the  post-buckling behavior of p la tes  are concerned with 

primary buckling. 

Owing t o  

By means 

Levy (lo) has obtained an  "exact" solution t o  the  

Friedrichs 

Masur (14) has u t i l i z e d  a s t r e s s  function space 

Secondary buckling has been observed through experiments ,(15916917) 

and i n  the case of c i rcu lar  p la tes ,  the  i n s t a b i l i t y  of the  primary buck- 

l i n g  mode has been pointed out by several authors.(11914) 

SteintB1 has used a perturba%ion technique t o  convert the nonlinear large 

def lect ion equations of von K&m6n in to  a set of l i nea r  equations and 

t o  investigate the post-buckling behavior of simply supported rectangu- 

lar  p l a t e s  by solving the f i r s t  few of the equations. 

Further, 

- -  

H i s  invest igat ion 
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ind ica tes  possible changes i n  buckle pat tern;  t he  same has a l s o  been 

noted by Koiter . 0 9 )  

Bisplinghoff and Pian(20) have t r ea t ed  t h e  case of vibra- 

t i o n  of a thermally s t ressed rectangular p l a t e  which is  simply sup- 

ported and free t o  displace l a t e ra l ly .  

t h e  case of a uniformly heated plate  with two opposite edges simply 

supported and with generalized support conditions on t h e  other two 

edges. Both papers consider t h e  small vibrat ions of t h e  p l a t e  i n  

i t s  pre- and post-buckling states, the  analysis  of t h e  latter being 

approximate. 

of a buckled c i r cu la r  p la te  by means of both per turbat ion techniques 

and power series expansions. Their analysis  i s  "exact" within t h e  

l i m i t s  of c l a s s i c a l  p l a t e  theory,  small amplitude vibrat ion and i n  

t h e  sense of a converging series which has been truncated. 

Shulman(21) has considered 

Herzog and Masur (22) have t r e a t e d  t h e  case of vibrat ion 

The present study i s  concerned with t h e  l inear ized  vibrat ions 

of a rectangular p l a t e  r e l a t i v e  t o  a s t a t i c  buckled configuration, and 

with the  i n s t a b i l i t y  of t he  buckling modes. Both the  s t a t i c  and 

dynamic equations of equilibrium are solved by perturbation techniques. 

If perturbat ion coefficients up t o  t he  t h i r d  order are included, t he  

resu l t s  are acceptable f o r  a s ignif icant  range of t h e  loading parame- 

t e r .  For la rge  values of t h e  l a t t e r  t h e  frequency of v ibra t ion  of t h e  

p l a t e  is  obtained by means of t h e  Galerkin method while t he  s t a t i c  

problem i s  solved by a method similar t o  t h e  one due t o  Marguerre. 
\ 



CHAPlllER I1 

FOFMULATIOll OF THE PROBLEM 

I n  w h a t  follows we consider t he  xy plane t o  be the middle 

plane of an e l a s t i c ,  isotropic  plate and z the  direct ion of the  

l a t e r a l  deflection. The p l a t e  i s  subjected t o  membrane forces i n  the  

plane of t he  plate .  For the sake of convenience, the index notation 

is used f o r  the  general discussion of the problem, w i t h  Latin sub- 

s c r i p t s  i, j and k taking the values of x and y,  a repeated subscript  

representing the  sum of a l l  allowable values of t h a t  subscript ,  and 

a comma followed by a Latin subscript denoting appropriate d i f f e ren t i a -  

t ion.  

Let a p l a t e  of thickness h be subjected t o  prescribed edge 

th rus t s  ATi on B' and t o  displacements XUi on B", i n  which 

B = B' + B" forms the  boundary of the region R of t he  middle plane 

and A i s  a parameter assuming increasing posi t ive values. The mem- 

brane displacements and s t resses  u i  and tij ,  respectively,  may then 

be conveniently characterized by 

u i  = xu; + u; 
0 tij  = X t i j  + ~ ; j  

I n  Equations (2.1) t he  f i rs t  terms on the r igh t  side correspond t o  the  

unbuckled s t a t e  and are  governed by t he  customary "generalized plane 

stress I' equations 

0 E 1-v o 0 0 0 
tij  = - [+UiYj + u j , i  + vuk,k6ijl = t j i  

1-V2 
i n  R (2.2) 

-5-  
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t y j n j  = T~ on B' 

u? = ui  on B" 
1 

(2.3) 

i n  which E and v are Young's modulus and Poisson's r a t i o ,  respec- 

t i v e l y ,  "3 i s  t h e  Kronecker de l t a ,  and ni axe t h e  components of 

t h e  u n i t  outer  normal. 

The second (primed) terms i n  Equations (2.1) represent t h e  

changes induced by buckling and s a t i s f y  the  set of equations 

T '  = o  
i 3  ,3 

T ! n  = O  on B'  

VI = o  on B" 

13  j 

1 

(2.5) 

i n  which t h e  s t a t i c  def lect ion W satisfies t h e  addi t iona l  equation 

DLWW - h(Atpj + T b j ) W , i j  = 0 i n  R (2.6) 

and appropriate boundary conditions on B. In  Equation (2.6) A stands 

f o r  t h e  Laplacian operator and D, t h e  bending s t i f f n e s s ,  i s  given by 

m3 
l2(1-?) 

D =  ( 2 . 7 )  

The separation of t h e  solution i n t o  two p a r t s  i n  l i n e  with 

Equation (2.1) has been found convenient because of t h e  l i n e a r  homo- 

geneity of Equations (2.4) and (2.5) i n  U; and T '  . Tha t  i s ,  f o r  

a given f'unction W(x,y) these equations represent a boundary value 
i 3  

problem whose solut ion may be expressed symbolically by means of 

i n  R 

(2.4) 
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The operator so defined obeys appropriate superposition pr inciples ,  e.g., 

It is  a l so  noted t h a t  for  suff ic ient ly  small values of 

Equations (2.4) , (2.5), and (2.6) admit only t r i v i a l l y  vanishing solu- 

X (say, X 5 lo), 

t ions .  For h > A, these represent unstable configurations. Other 

(i.e. buckled) configurations e x i s t  i n  t h a t  case, although not a l l  of 

these may be s table .  

If a small vibration w(x,y)e icut is superimposed on W, then, 

after l inear iza t ion  with respect t o  w, the  governing equation of motion 

i s  

i n  which 

P = @  

(2.10) 

(2.11) 

with p representing the  mass density. The dynamic membrane stress 

t '  (or  ra ther  i t s  amplitude) is  given symbolically by 
i j  

if  in-plane i n e r t i a  is  ignored.* 

We consider now a rectangular, simply supported p l a t e  covering 

< the  region 0 <= x = a, 0 2 y 5 b. It is postulated that  the edges are 

made t o  approach one another by a specified amount and are then held 

fixed during the  vibration. This seemingly a r t i f i c i a l  type of boundary 

* For t h e  case of shallow she l l s  t h i s  has been j u s t i f i e d  i n  R e f .  23. 
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. 

condition i s  equivalent t o  fixing* the boundary while the p la te  i s  

heated uniformly; t h i s  is considered t o  be a reasonably r e a l i s t i c  

representation of actual conditions. 

The complete set of boundary conditions f o r  the s t a t i c  case 

i s  therefore as follows : 

B1(W) f W(0,y) = W(a,y) = W(x,O) = W(x,b) = 0 (2.13) 

= W,Xx(O,Y) = W,,(a,y) = w,yy(x,o) = W,yy(x,b) = 0 (2.14) 

(2.15) 
u0(O,y) = vO(X,O) = 0; u 0 (a,y) = UE, vo(x,b) = VE 

vo (0,y) = vox(a,y) = U ; ~ ( X , O )  = u:y(x,b) = 0 
,x , 

UE and VE are the magnitude of the displacements which a re  required 

t o  cause the p la te  t o  buckle i n  the l inear  sense; thus the value of X 

determines the  extent t o  which the c r i t i c a l  deformation (or  temperature 

increase) has been exceeded. 

For the dynamic case the boundary conditions are 

B l ( w )  w(0,y) = w(a,y) = w(x,O) = w(x,b) = 0 (2.17) 

q w )  = 
u ' (0 ,y)  = u'(a ,y)  = v'(x,O) = v'(x,b) = 0 

",&,Y) = W,&,Y) = w,m (x ,O)  = w , ~ ( x , ~ )  = 0 (2.18) 

(2 19)  
v;x(o,y) = v;x(a,y) = u;y(x,o) = u;y(x,b) = 0 

i n  which u' and v '  are  the dynamic displacement amplitudes of a 

point i n  the x and y direct ions,  respectively. 

* Actually, f i x i t y  i s  assumed only i n  the  normal direct ion,  while the 
p l a t e  i s  f ree  t o  s l i de  i n  the  direction of the boundary. This type 
of shearless constraint reduces the computational labor enormously, 
yet  i s  believed t o  introduce no significant deviation from the com- 
putationally f a r  more intractable  condition of f u l l  f i x i ty .  
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THE PERTURBATION SOLUTION 

In  t h i s  chapter we obta in  a solut ion t o  both the  s t a t i c  and 

dynamic problem through a perturbation expansion. 

method i s  operative only within a l imited range of t h e  perturbation 

parameter; fo r  la rge  values t h e  ser ies  converges too slowly t o  be 

handled without excessive labor.  

t a ined  appear t o  be acceptable up t o  a value of at  least t e n  of t h e  

post-buckling parameter A. The s t a t i c  portion is  similar t o  previous 

work by Stein,('') but has had t o  be rederived i n  order t o  make t h e  

dynamic port ion comprehensible. 

As usual  t h i s  

In the  present case t h e  results ob- 

W e  consider first the  s t a t i c  case. It is  required t o  solve 

Equation (2.6), i n  which to and uy satisfy Equations (2.2) and 

TiJ, Ui and W satisfy Equations (2.4), with the  associated boundary 

conditions Equations (2.13 ) , (2.14), (2.13) and (2.16). 

13 

Equations (2.2) and (2.15) represent t h e  usual  problem of 

plane e l a s t i c i t y ,  whose well-known solut ion f o r  a rectangular p l a t e  is  

where UE and VE are found later on. 

W e  now assume t h e  functions W and A t o  be expandable i n  

a power series i n  terms of an a rb i t r a ry  parameter E i n  t h e  neighbor- 

hood of t he  point of buckling E = 0,  t h a t  is ,  with W = .  W ( X , Y , E ) ,  

w = E W ( l )  + E: 3 w (3) + E  % ( 5 )  + ... 
A = A. + E2$ + E 4 A 4  + .... 

-9- 
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Here W a r e  functions of x,y  only and E ,  t h e  per turba t ion  

parameter, w i l l  be assumed t o  be monotonely increas ing  as buckling 

progresses.  The f a c t  t h a t  W i s  odd and A i s  even i n  E may be 

easily v e r i f i e d  upon s u b s t i t u t i o n  i n  t h e  r e l evan t  equations. 

t h e  sake of b r e v i t y  these  s t eps  a re  omitted here. Since at  t h e  

po in t  of buckling, i s  i d e n t i f i e d  as t h e  load parameter 

f o r  t h e  N e r  buckling load. In view of Equations (2.8) and (2.9) 

T i j  can be expressed i n  terms of  the a r b i t r a r y  parameter E as 

follows : 

For 

E: = 0 ,  A, 

i n  which 

The membrane stress equilibrium 

t h e  a d d i t i o n a l  displacements as 

1 -v l+v VI  + - u;yy + - U' ,= 2 2 ,XY 

equations can be wr i t t en  i n  terms of 

1-v - -  l+v = - w  w - -  1-v l+v 
vim + -  2 v;= + - 2 ,y ,YY 2 w,xw,xY 2 w9Yw,= 

I n  view of t h i s  t h e  add i t iona l  displacements U' and V' can a l s o  be 

expanded i n  a power series of t h e  same arbitrary parameter E, and t h e  

series i s  expected t o  start with t h e  second power of E and t o  contain 

Superscr ip ts  i n  parentheses 
not t o  a c t  as an exponent. 
w i l l  be omitted where t h e r e  
cluded only if  necessary. 

are intended t o  i d e n t i f y  t h e  va r i ab le  and 
Whenever poss ib l e ,  however, parentheses 
i s  no possible confusion and w i l l  be in -  
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on ly  even expansions. Thus, 

U' = ,2u(2) + €4U(4) + .... 
V' = &(2) + E4v(4) + .... 

When these  expansions are s u b s t i t u t e d  i n  Equation (2.6) and 

o t h e r  re levant  equations, t h e  requirement that each c o e f f i c i e n t  i n  t h e  

power series vanish ind iv idua l ly  leads t o  a set of l i n e a r  d i f f e r e n t i a l  

equations with assoc ia ted  boundary conditions.  These equations can be 

solved i n  sequence. 

For t h e  d i f fe ren t ia l  equation i s  

1 1 0 1  L1(W ) S  W W  - hhotijW,ij  = 0 ( 3  9 )  

and t h e  boundary conditions a r e  

B-Jw1, = 0 (3.10) 

E$($) = o  (3.11) 

This i s  t h e  l i n e a r  eigenvalue problem f o r  t h e  buckling of a rec tangular  

p l a t e  subjec t  t o  edge compressions o r  displacements. It i s  now assumed 

t h a t  t h e  edge displacements a r e  such as t o  induce a hydros t a t i c  plane 

stress ,* t h a t  i s ,  

There e x i s t  an i n f i n i t e  number of eigenvalues and eigenfunctions.  

normalized de f l ec t ion  function 

The 

W1 = h s i n  mnx s i n  % 
a b 

(3.13) 

* This corresponds t o  t h e  case of uniform hea t ing  of a thermally 
i s o t r o p i c  p l a t e .  
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i n  which m and n are integers ,  automatically satisfies the  boundary 

conditions. This f ixes  the  physical meaning of E as representing 

t h e  amplitude of t h e  first term i n  t h e  per turbat ion expansion. The 

associated eigenvalue takes  the familiar form 

Any combination of m and n i n  the above expression can be iden t i f i ed  

as an eigenvalue of t he  d i f f e r e n t i a l  equation. 

l i n g  mode i s  of i n t e r e s t ,  t he  lowest eigenvalue associated w i t h  t h e  

first buckling mode i s  obtained by choosing m = n = 1 

the aspect r a t i o  a of t h e  plate. 

If only t h e  first buck- 

regardless of 

6 
For e3 t h e  different ia l  equation i s  

w i t h  W1 given by Equation (3.13). 

The associated boundary conditions are 

B1($) = 0 

%(@) = o  

The d i f f e r e n t i a l  Equation (3.15) here is  nonhomogeneous, but 

t h e  associated homogeneous equation is  iden t i ca l  w i t h  Equation ( 3 . 9 ) .  

This  homogeneous system has the  nontr ivial  so lu t ion  W’. The nonhomo- 

geneous d i f f e r e n t i a l  equation therefore has a solut ion if and only i f  

the  right hand s ide  of Equation (3.15) is  orthogonal t o  m e n  

Equation (3.9) i s  multiplied by W3 and Equation (3.15) by W1, a f ter  

+.(24) 
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i n t e g r a t i o n  by p a r t s  and i n  v i e w  of the boundary conditions,  t h i s  

or thogonal i ty  condition becomes 

Furthermore, the  so lu t ion  is  not unique. 

added t o  a p a r t i c u l a r  so lu t ion  i s  a l s o  a so lu t ion  of t h e  d i f f e r e n t i a l  

Equation (3.15). Let  5 be a p a r t i c u l a r  so lu t ion .  Then $ is ,  i n  

genera l ,  given by 

Any a r b i t r a r y  mul t ip le  of W1 

9 = i 3  +a3+ (3 .20)  

The choice of t h e  value of a3 i s  a rb i t r a ry .  For convenience of compu- 

t a t i o n  l e t  

then  

This i s  always poss ib l e ,  s ince  i n  the present case 

Let  t h e  vec tor  

and l e t  t h e  inner  product 

; f P I * T @ = h  J 

+ 
T denote any stress f i e l d  Ti j  symbolically, 

of two vectors and ??@ be defined by 

(3.24) 

i n  which @ is t h e  s t r a i n  associated wi th  the  stress 18 . I n  view 
13 i j  

of the  p o s i t i v e  de f in i t eness  of t h e  s t r a i n  energy and of t h e  symmetry 

of t h e  s t r e s s - s t r a i n  c o e f f i c i e n t s ,  it follows tha t  . i s  p o s i t i v e  

d e f i n i t e  and t h a t  - ?@ =*  @ . 
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By Equation (3.16), through the  application of Green's 

theorem, and i n  view of the boundary conditions, it can be shown 

t h a t  

Likewise we define 

Equation (3.19) can be writ ten 

% = -  $2 * ?2 

$0 - TQ (3 27) 

Since, f o r  posi t ive 

F 3? i s  posi t ive de f in i t e ,  % is always posi t ive.  This, i n  t u r n ,  

A, ?& - @ is  negative, [see (3.23)],  and since 

confirms the  well-known fac t  t h a t  the load parameter increases with 

increasing buckling amplitudes near the  buckling point; the  lat ter 

therefore  represents a point of' stable equilibrium. 

For € 5  the  governing d i f f e ren t i a l  equation i s  

with associated boundary conditions 

B, (w~)  = o 

B2(W5) = 0 

(3.30) 

(3.31) 

A s  before, the r igh t  hand side of muation (3.28) must s a t i s f y  the  

orthogonality condition if the  equations has a solut ion f o r  W5. Thus, 

$ lfj$iwljdA + $ TijW,iW, 4 1 1  jdA 
14 = - 
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Let 3 be a par t icu lar  solut ion of Equation (3.28), then 

w? = 3 + a5w 1 

Let, f o r  convenience, 

from which 

= o  

(3*33) 

(3.34) 

In  terms of the  inner product notation, Quat ion  (3.32) reduces t o  

i n  which Equation (3.29) has been u t i l i zed .  Since 3' a can be 

e i t h e r  posi t ive o r  negative, no conclusion can be drawn r e l a t i v e  t o  

the sign of ~m_l i~e  &' . 

The equations which contain higher powers of E can be solved 

i n  the  same manner; however, t h e  calculations become exceedingly cum- 

bersome. For the  range of  values considered here no fur ther  expansion 

has been found necessary. 

W e  now consider the  vibratory motion of the  plate .  It is  noted 

t h a t  t he  method of solut ion i n  the dynamic case i s  similar t o  the  one 

used above and hence only the  essent ia l  points are presented. 

The equation governing the motion of t he  p l a t e  is  Equation 

(2.10). For the  sake of convenience, i t  i s  yesel- ted Ggriin: 

- h t '  W - phw = 0 (2.10) 
i j  , i d  DMW - h(htyj  + Tij) w , ~ ~  

with 

(2.12) 
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c 

sub jec t  t o  t h e  boundary conditions 

B l ( W )  = 0 

B2(w) = 0 

(2.17) 

(2.18) 

Here, 1, t y j ,  T ~ J  and W are now assumed t o  be known. The d i f f e r e n t i a l  

equations and t h e  boundary conditions are l i n e a r l y  homogeneous i n  

and once again we have an eigenvalue problem i n  which 

eigenvalue. For each eigenvalue p, there e x i s t s  an e i g e n h n c t i o n  

w(x,y) P9 

boundary conditions.  The p resc r ip t s  p,q denote the pqth mode  of 

v ibra t ion .  

w, 

p r ep resen t s  the 

w 
which satisfies the d i f f e r e n t i a l  equation as w e l l  as the  

We assume that the  eigenfunction pqw and the  assoc ia ted  

eigenvalue pqp 

parameter E as i n  the s t a t i c  case, t ha t  i s ,  

can be expanded i n  a power series i n  terms of t h e  same 

PqW = HW i o 1  + €2 pqw(2) + € 4  pqw(4) + .... (3.37) 

The f a c t  t h a t  pqw and pqp are even expansions i n  E may be e a s i l y  

v e r i f i e d  upon s u b s t i t u t i o n  i n  t h e  relevant equations.  For t he  sake of 

b r e v i t y  these s t eps  are omitted here. 

pst.& can be expressed as 

I n  view of Equation (2.12) 

wi th  

(3.39) 
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Upon subs t i tu t ion  of these perturbation expansions i n  Equation (2.10) 

a new sequence of d i f f e r e n t i a l  equations is  obtained whose solut ion 

follows procedures analogous t o  those presented f o r  t he  s t a t i c  case. 

From here on t h e  prescr ipts  p,q w i l l  be omitted, it being 

understood t h a t  w ( ~ ) ,  p(n) and tip) denote t h e  nth per turbat ion 

coef f ic ien ts  of t h e  def lect ion,  frequency squared and membrane stresses 

functions,  respect ively,  f o r  t h e  pqth m o d e  of vibrat ion of t h e  p la te .  

Whenever there  i s  a poss ib i l i t y  of confusion, o r  a spec i f ic  m o d e  of 

vibrat ion is  referred t o ,  the  prescr ipts  w i l l  be added. 

j 

For EO t he  d i f f e r e n t i a l  equation i s  

with t h e  associated boundary conditions 

This i s  satisfied by the  normalized* function 

qXY s i n  - b 
@ = s i n  P+ 

i n  which p and q are integers ,  provided t h a t  

The membrane stresses t1 can now be obtained from i J  

* 
Naturally the  l inear ized vibration solut ion i s  subject t o  an 
a r b i t r a r y  amplitude factor .  

(3.43) 

(3  44) 
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For c2 the d i f f e r e n t i a l  equation i s  

and t h e  boundary conditions are 

(3.47) 

(3.48) 

A s  before,  the  r igh t  hand s ide of Quat ion  (3.46) must satisfy an 

orthogonality condition* if a solution i s  t o  exis t .  After some manipu- 

l a t i o n  t h i s  leads t o  

(3.49) 

The solut ion of t h e  d i f f e r e n t i a l  Equation (3.46) is  not unique; any 

multiple of w0 

& the d=4fferential e",--+<-- w--r +L- --L- -- -------2---- q u a u i u r r .  rv2 u i i ~  3a.n~ VI cuiivculcuce We let 

added t o  the  par t icu lar  solut ion is  a l so  a solut ion 

Thus, & i s  determined and t3 can now be obtained from i d  

ti 3 j = (<iw:j + w:i<j + i3iw:j + w: ie j )  

For e4 the d i f f e r e n t i a l  equation i s  

(3.51) 

(3.52) 

* Note that t h i s  orthogonality condition is d i f f e ren t  from the one 
per ta ining t o  the s t a t i c  case. 
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and t h e  associated boundary conditions are 

(3.53) 

(3 54) 

Again, t h e  orthogonality condition determines the  value of 

h I ( w O ) ~ ~ A  
(3 55) 

while t h e  def lect ion function w4 s a t i s f i e s  

(3.56) 4 J w WodA = 0 

Since the  s t a t i c  def lect ion i s  truncated a t  the  coef f ic ien t  

W5, t he re  is no sense i n  pursuing the so lu t ion  of  t he  dynamic problem 

beyond t h i s  point.  

"he r e s u l t s  of these calculationsare given i n  Appendix A f o r  

t h e  general case of a rectangular plate.  The first pa r t  dea ls  with the  

s t a t i c  problem. Algebraic expressions are given f o r  t h e  expansion terms 

i n  the  def lect ion W(x,y), the additional stresses T '  (x ,y) ,  t he  load 

parameter A ,  and the  addi t ional  membrane displacements U '  (x ,y)  and 

V'(x,y). 

p l a t e  buckles f r e e l y  immediately a f t e r  i t s  unbuckled equilibrium con- 

f igura t ion  becomes unstable; however, t he  case of m = n = 1 is  the  only 

one which has p rac t i ca l  significance.  

i j  

These are not necessarily based on the  assumption t h a t  t h e  

The dynamic response f o r  the same case i s  computed next. 

Again general algebraic expressions are given f o r  t he  vibrat ion modes, 

membrane stresses, and frequency parameters. Only the  lowest two modes 

p = 1, q = 1 and p = 2, q = 1 a r e  considered; an obvious, and t r i v i a l ,  
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extension is  e a s i l y  obtained f o r  p = 1, q = 2 through a su i tab le  

exchange of variables.  

Higher buckling-modes ( s a y ,  m = 2, n = 1) are of course 

associated w i t h  l a rge r  c r i t i c a l  buckling parameters; however, as t h e  

lowest buckling parameter A, is exceeded, a t  least one frequency 

becomes imaginary and the  associated unbuckled equilibrium configura- 

t i o n  becomes unstable and hence physically meaningless. Nevertheless 

it i s  conceivable tha t  i f  the  p la te  were forced i n t o  one of these 

higher buckling modes (perhaps through the  appl icat ion of kinematic 

cons t ra in ts ) ,  i t s  equilibrium may again become stable f o r  su f f i c i en t ly  

l a rge  buckling amplitude. A necessary and suf f ic ien t  c r i t e r i o n  f o r  

such a condition is  t h a t  t he  square of the smallest frequency of vibra- 

t i o n  becomes again posi t ive.  

This may be physically s ign i f icant .  A s  has been observed 

and commented on repeatedly, buckled p l a t e s  of ten snap from t h e i r  

o r ig ina l  buckling configuration in to  another one. 

o f  “Secondary buckling” takes place is  conjectural  and has been the  

object of some speculation; f o r  example it has been postulated t h a t  a 

su i t ab le  c r i t e r i o n  i s  obtained when the energies i n  the  primary and 

secondary states are equated.(25) 

a snap-through from a s t ab le  configuration in to  an unstable one can be 

ruled out.  

r a t ion  becomes s t ab le  may therefore  be considered a lower bound t o  the  

secondary buckling parameter. 

Jus t  when t h i s  type 

In  any event it i s  safe t o  state t h a t  

The lowest loading parameter at  which the secondary configu- 

Charts showing the  frequencies of vibrat ion f o r  spec i f i c  cases 

are given i n  t h e  present paper f o r  several such higher buckling modes, 
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and i n  Appendix A are included t h e  general  a lgebra ic  expressions f o r  

t h e  v i b r a t i o n  modes, membrane s t r e s s e s  and frequency parameters of  t h e  

lowest two modes p = 1, q = 1 and p = 2, q = 1 if t h e  p l a t e  has 

buckled i n t o  t h e  second mode 

press ions  of po and p2 are given f o r  any v i b r a t i o n  m o d e  and f o r  any 

buckling mode. These expressions are genera l ly  r a t h e r  complex and have 

the re fo re  been deleted f r o m  t h e  main body of t h e  paper. 

m = 2, n = 1. The general  a lgebra ic  ex- 

For t h e  spec ia l  (and, near t h e  buckling po in t ,  most important) 

condition of m = n = p = q = 1, the  formulas become much simpler. 

Since, f o r  that case,  @ = W1, it follows from Equation (3.40) t h a t  

po = 0 (3.57) 

as expected, which i n  t u r n  implies t h a t  31 = 2!b2 and 3 = 3k3. When 

these  r e l a t i o n s  are subs t i t u t ed  i n  Equations (3.49) and (3 .55 ) ,  it 

follows, after some manipulation, that 

For t h e  rate of change of frequency of v ib ra t ion  with respec t  

t o  t h e  load parameter i n  t h e  neighborhood of buckling (E  = 0) one obta ins  

For t h e  

of !& 

v ib ra t ion  mode 

a t  t h e  poin t  of buckling, a s  an t i c ipa t ed  s ince  t h e  p l a t e  i s  stable 

p E q = 1, is p o s i t i v e  and so i s  t h e  value 

i 

i n  t h e  immediate post-buckling neighborhood. A similar, though less i m -  

p o r t a n t ,  conclusion i s  reached f o r  any v i b r a t i o n  mode s a t i s f y i n g  p*, q=n. 



CHAPTER Iv 

THE EMERGY METHOD SOLUTION 

I n  the  perturbation method, the rap id i ty  of convergence of 

the perturbation series is  always an issue. In  some problems the  

series converges f a i r l y  rapidly,  i n  others it converges only for  a 

r a the r  small range of values of the load parameter 

(though not f u l l y  conclusive) of the convergence of t he  perturbation 

se r i e s  i s  the  agreement between the r e su l t s  obtained from the trunca- 

t i o n  at the  term and en-1. The present calculations show satis- 

factory convergence fo r  a technically s ign i f icant  range of t he  load 

parameter. 

as expected, when the buckling amplitudes reach very large values. 

To cover this range a t  least approximately an energy method is  employed 

i n  t h i s  chapter. 

A. An indicat ion 

Nevertheless t h e  truncated expressions become unrel iable ,  

The s t a t i c  condition is  analyzed by a method similar t o  the  

one of Marguerre-Papkovitch.(g) 

t o  be expressed by means of 

The def lect ion of the p l a t e  i s  assumed 

w = C,d+ c2w2 + 463 (4.1) 

i n  which W l ,  W2 and $ are geometrically admissible functions and 

C1, C2 and C3 are parameters whose values a re  t o  be determined from 

the theorem of minimum potent ia l  energy. With t h i s  assumed deflect ion 

f'unction, the additional 

EQuation (2.8), that i s ,  

membrane s t resses  T' can be obtained from 13 

T' = C:T$!j + + + C1C2% + C1C3'l$: + C2CJlf: (4.2) 
i j  

-22 - 
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The additional po ten t ia l  energy V, that  i s  the  difference 

i n  the poten t ia l  energies of the  buckled and unbuckled states, is  de- 

fined by 

After application of Green's theorem, membrane stress equilibrium 

equations (T 

energy & is  now given by 

= 0) and boundary conditions, the membrane s t r a i n  
iJ,J 

(4.4) & = r ; J T ' W  h W dA 
,i 9 3  

If the edges of the  p l a t e  are simply supported, the bending s t r a i n  

energy U,., reduces t o  
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Since to = - aij , We becomes 
i j  

Upon subs t i tu t ion  of Equations (4.1) and (4.2) i n t o  Equation (4.3) we 

have 

Se t t ing  t h e  first var ia t ion  of t he  poten t ia l  energy equal t o  zero leads 

Terms such as $2, WF etc .  may also appear; however, i f  W ( n )  
are chosen t o  be orthogonal functions,  these terms vanish from t h e  
above expression. 

* 
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C1, C2 and C 3  can be solved i n  terms of the load parameter A from 

Equations (4.8). 

W-e d e f l e c t i o n  func t ions  of t h e  lowest buckl ing m o d e  can be 

assumed t o  be of  the following form 

~1 = s i n  9 x s i n  n y 

~2 = s i n  a x s i n  % y 

~3 = s i n  5 x s i n  331 

a 5 

a 6 (4.9) - 
a FY 
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This assumption is  not without j u s t i f i c a t i o n .  W1 is t h e  buckling mode 

as predic ted  i n  t h e  l i n e a r  theory. The formation of a $ wave along 

t h e  unloaded edges and i n  t h e  d i r ec t ion  of t h e  loads has been observed 

experimentally i n  t h e  buckling of a simply supported p l a t e  subjected t o  

long i tud ina l  edge compressions. It i s  the re fo re  reasonable t o  include 

both 8 and rJ' M c t i o n s  i n  the  present problem. Note t h a t  d i s  

a l s o  t h e  first term of t h e  per turba t ion  series f o r  W and ($ + d )  
i s  t h e  second term of t h e  per turba t ion  series f o r  a square p l a t e .  

An exact so lu t ion  t o  the  dynamic problem i s  genera l ly  out of 

t h e  ques t ion ,  i n  s p i t e  of i t s  l i n e a r i t y ,  because of t h e  presence of 

func t ions  of x and y as coe f f i c i en t s  i n  t h e  r e l evan t  d i f f e r e n t i a l  

equations. For t h i s  type of problem t h e  Galerkin method (which, f o r  

conversative systems of t h e  present kinds,  represents  e s s e n t i a l l y  a 

modified energy method) y i e l d s  comparatively good approximations which 

are known t o  c o n s t i t u t e  upper bounds t o  t h e  exac t  eigenvalues.* 

If t h e  v ib ra t ion  mode i s  assumed t o  be of t h e  form 

then  t h i s  technique l eads  t o  the  l i n e a r  system 

N 

n d  
C anPm = o (m = 1, 2, ... , N) 

(4.10) 

(4.11) 

i n  which 

Pm = Pm = D ./ (AW")(AW")dA + A??' 

+ t n .  (w w") - p,h J JkmaA 

(m) + 5' (m) 
(4.12) 

No such statement can be made here, of course,  as long as t h e  s t a t i c  
problem i tself  has been solved only approximately. 

* 
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These equations have a non- t r iv i a l  so lu t ion  f o r  i f  

determinant 1 PmI = 0 (4.14) 

from which p i s  computed. 

I n  t h e  present ana lys i s  four terms have been used i n  t h e  

approximating series, namely, 

2 = s i n  E s i n  
a b 

(4.15) 

The squares of  t h e  frequencies of t h e  various modes are p l o t t e d  as 

f’unctions of t h e  load parameter A, with t h e  results shown i n  t h e  

char t  

To determine t h e  s t a b i l i t y  and i n s t a b i l i t y  of hhe buckling 

modes it i s  necessary t o  examine the  second v a r i a t i o n  of t h e  p o t e n t i a l  

energy V. The l a t t e r  i s  given i n  Equation (4.3),  which, f o r  convenience, 

may be wr i t t en  symbolically 

v = ub(w,w) + um (w) (+ - $ A*. (w) (4.16) 

The following expansions i d e n t i t i e s  are a l s o  usef’ul: 

+ 2Y, (w) (w) + 4vm (ww) (ww) 

+ 4% +w) (-> + v, (w) (w) 

(4.17) 

--* 
T O O  (w+w) =F* (ww) + 2 F .  (ww) +To. (ww) 
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A configuration i s  i n  equilibrium if t h e  po ten t i a l  energy assumes a 

s ta t ionary  value. By standard methods t h i s  leads t o  Equation (2.6) 

i n  t h e  present problem. 

which determines the  s t a b i l i t y  o r  i n s t a b i l i t y  of t he  buckled state, 

takes  t h e  form 

The second var ia t ion  of t h e  po ten t i a l  energy, 

A f t e r  some integrat ions by pa r t s  and upon appl icat ion of t h e  boundary 

conditions, t h i s  leads t o  

i n  which 

(4.20) 

It may be of i n t e re s t  t o  note t h a t  in  view of Equation (2.10) the  eigen- 

values 

vided the  function q(x,y) 

v ibra t ion  mode Wn(X,y). Since posi t ive values f o r  a l l  pn have pre- 

viously been ident i f ied  with s t a b i l i t y  t h i s  confirms t h e  familiar con- 

nection between s t a b i l i t y  and t h e  posit ive def in i teness  of t h e  second 

var ia t ion  of t h e  poten t ia l  energy. 

pn are equal t o  the  s ta t ionary values of t h i s  expression pro- 

i s  chosen t o  be t h e  associated normalized 

It is  recal led t h a t  X i s  t h e  r a t i o  of t h e  edge displacement 

t o  t h a t  required f o r  t he  i n i t i a l  i n s t ab i l i t y .  Now l e t  y be t h e  r a t i o  

of t h e  edge compressive force caused by the  prescribed edge displacement 

t o  t h a t  required f o r  i n i t i a l  i n s t ab i l i t y .  Then y i s  r e l a t ed  t o  X 



by the  equation 
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(4.21) 

i n  which the  in tegra ls  a re  along a loaded edge. 

often characterized by i ts  y versus X curve, i.e., the  load-shortening 

curve. The intersect ion of the load-shortening curve of  one mode (say 

the symmetric m o d e  which corresponds t o  the  lowest buckling load) w i t h  

the  load-shortening curve of another mode ( the  antisymmetric m o d e  which 

corresponds t o  the  next lowest buckling load) usually indicates  a possi- 

b i l i t y  of the change of buckling modes. 

of secondary buckling takes place i s  conjectural. 

consider it reasonable t o  apply the equal energy c r i t e r ion  t o  determine 

the change of buckling m o d e s .  

The buckled state is 

Just  when and where t h i s  type 

Various a u t h o r ~ ( ~ 5 , ~ )  

Hence, the primary buckling m o d e  may change 

t o  the secondary buckling mode when 

Vl = v2 (4.22) 

i n  which Vi 

m o d e  and V2 t h a t  associated w i t h  the secondary buckling mode. 

is  the poten t ia l  energy associated w i t h  the  primary buckling 

In the present analysis ,  the vibrat ion method and equal energy 

c r i t e r ion  a re  used t o  determine t h e  s t a b i l i t y  of the buckling m o d e s  and 

changes of buckling m o d e s .  

the s t a b i l i t y  and change of buckling modes of a simply supported rectangu- 

lar p l a t e  subjected t o  uniaxial-edge compression i s  a l so  investigated by 

the present method. 

Appendix B. 

In  addition t o  the problem stated i n  Chapter 11, 

The d e t a i l s  o f  t h i s  analysis are presented i n  



CHAPrER v 
RESULTS AND DISCUSSION 

Charts showing the  frequencies of vibration and the  load- 

shortening curves a re  given i n  nondimensional quant i t ies  p', A '  and 

A", i n  which p' = p/4(g) S 4 D  E p,  A '  = A/2(g)2 and A" = X / 4 ( 3 2  E . 
A l l  calculations are based upon the  value of Poisson's r a t i o  v = .3O. 

Figure l a  shows the  r e l a t i o n  between p' and A '  f o r  small 

fo r  a square p la te  subjected t o  plane hydrostatic pres- 

a 

values of A'  

sure. 

verges sa t i s f ac to r i ly  f o r  

i . e . ,  p = 1, q = 1 and p = 2, q = 1, about t he  lowest buckling con- 

f igurat ion (m = n = 1) are plotted.  

increases prac t ica l ly  l i nea r ly  with A '  

s t a b i l i t y  f o r  both the symmetric (p  = q = 1) and antisymmetric (p  = 2, 

q = 1) vibrat ion modes. 

The results are  obtained fromthe perturbation series which con- 

A '  < 16. Only the  two lowest vibrat ion modes, 

It is  in te res t ing  t o  note t h a t  p' 

i n  the v i c in i ty  of i n i t i a l  in-  

The frequency of' the  symmetric vibration m o d e  i s  strongly 

affected by the  increase of A ' ,  the  rate of increase of p '  after 

buckling being twice as much as the rate  of decrease before buckling. 

For example, w i t h  A '  = 4 and p '  = 5.8, the  "s t i f fness"  of the p l a t e  

has increased t o  2.41times t h a t  of the unbuckled state while the  maxi- 

mum def lect ion at  the center of the p l a t e  i s  only 1.5  h. This rapid 

increase i n  the  s t i f fnes s  af%er buckling i s  important i n  f l u t t e r  analysis.  

In  general, the  vibration mode associated with the i n i t i a l  buckling mode, 

tha t  is ,  p = m and q = n, is the mode affected most strongly by the  

increase of A'. For further increase of A '  the frequency of the  

symmetric vibration mode becomes higher than t h a t  of the antisymmetric 

-30 - 
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mode. 

pr imar i ly  inextensional while t h e  symmetric v ib ra t ion  i s  pr imar i ly  

extensional.  

This i s  not unreasonable since t h e  antisymmetric v ib ra t ion  i s  

The results of t h e  same problem as shown i n  Figure l a  but  f o r  

a l a r g e r  range of  values of A '  a r e  shown i n  Figure l b .  The s o l i d  

l i n e s  represent  t h e  per turba t ion  so lu t ion  up t o  A '  = 50; however, t h e  

results become less r e l i a b l e  s ince ,  fo r  A '  > 20, t h e  per turba t ion  

s e r i e s  f o r  t h e  symmetric v ib ra t ion  mode converges r a t h e r  poorly. 

c o n t r a s t ,  f o r  t h e  antisymmetric v ibra t ion  mode it s t i l l  converges 

s a t i s f a c t o r i l y  f o r  values of A '  up t o  40. The dashed l i n e s  represent  

t h e  results of Equation (4.14) when the approximating series takes  t h e  

form of  Equation (4.15). It is  noted t h a t  after a f u r t h e r  increase of 

A ' ,  t h e  frequency of t h e  symmetric v ibra t ion  mode increases  less rap id ly  

and eventua l ly  becomes again less than t h a t  of t h e  antisymmetric vibra- 

t i o n  mode. This i s  due t o  t h e  f a c t  t h a t  f o r  l a r g e  values of A '  two 

nodal l i n e s  appear i n  t h e  symmetric v ibra t ion  m o d e ,  which the re fo re  be- 

comes more near ly  inextensional.  Figure 2 shows t h e  shapes of t h e  sym- 

metric and antisymmetric v ib ra t ion  modes f o r  various values of A ' .  

I n  

Figures 3a and 3b show t h e  r e l a t i o n  between 7 and A '  f o r  

t h e  same case of a square p l a t e  subjected t o  plane hydros ta t ic  pressure.  

The per turba t ion  results are shown i n  Figure 3a, t h e  energy method re- 

s u l t s  i n  Figure 3b. The r a t e  of  increase of 7 after buckling i s  only 

one fou r th  as much as t h a t  before buckling (as aga ins t  one h a l f  i n  t h e  

case of un iax ia l  edge compression) 

Figure 4 shows t h e  r e l a t ions  between p' and A '  f o r  rectangu- 

l a r  p l a t e s  of various aspect r a t i o s .  The p l a t e s  are assumed t o  be forced  
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20 x’ 0 4 8 12 16 

m=n= I , V10.30 

Figure la. Nondimensional Frequency Squared-bad 
Curves for  Square Pla t e  under Hydro- 
s t a t i c  Pressure. 
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0 10 20 30 40 50 60 70 
xt 

m=n= l , V = 0 . 3 0  

Figure lb. Nondimensional Frequency Squared-Load Curves 
for Square Plate under Hydrostatic Pressure 
(same as Figure la but extended range). 
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x= 1.053 

x =  IO 

x = 20 xx  
SYMMETRIC x= 70 ANTlSY MMETRIC 

Figure 2. Modes of Vibration f o r  Square Plate under 
Hydrostatic Pressure (only half plate is shown). 
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m=2,n=l ,  p = q = l  

Figure 4. Nondimensional Frequency Squared-Load Curves 
for Rectangular Plarte under Hydrostatic Pressure 
Second Buckling Mode. 



i n t o  t h e  second buckling mode (m = 2 

of a r t i f i c i a l  kinematic constraints  which, however, do not r e s t r i c t  t h e  

freedom of dynamic vibratory motion. For m = 2, n = 1, the  vibrat ion 

mode associated with negative p '  corresponds t o  p = q = 1. For a l l  

other  m o d e s ,  p '  i s  posi t ive i n  t h e  v i c i n i t y  of t h e  i n i t i a l  i n s t a b i l i t y  

and up t o  values of A '  which are of i n t e r e s t  t o  us; hence they are not 

considered here. 

and n = 1) through the  appl icat ion 

The s o l i d ,  dashed and dashed-dotted curves represent p '  

versus A' fo r  t he  p = q = 1 vibration mode of p l a t e s  of aspect r a t i o  

1, 2 and 2.45, respectively.  It i s  noted t h a t  p '  remains negative 

f o r  a l l  values of A '  > 1 f o r  aspect r a t i o s  of 1 and 2 ,  respect ively,  

a t  l e a s t  within t h e  l i m i t  of t h e  truncated series.* For an aspect r a t i o  

of 2.45 pt becomes posi t ive a t  1' = 7.70; moreover, t he  truncated series 

shows sa t i s f ac to ry  convergence f o r  the range of values considered. 

means t h a t  t he  m - 2, n = 1 bucklhg  configuration w i l l  become stable 

even af t , e r  t he  removal of %he a r t i f ic ia l  kinematic constraints  f o r  s u f f i -  

c i en t ly  la rge  values of 1'. 

fundamental mode in to  the  second mode may occur; i n  contrast  such secondary 

buckling i s  ruled out f o r  a square p la te  under hydrostat ic  pressure. 

This 

I n  t h i s  case secondary buckling from t h e  

Figures 5, 6 and 7 show the  load-shortening curves of t he  

lowest buckling configurations (m = 1, n = 1 

pla te s  considered i n  Figure 4. 

displacement i n  the  antisymmetric buckling configuration (m = 2, n = 1) 

increases with decreasing load when 

and m = 2, n = 1) f o r  the  

For a square p l a t e  (Figure 5 )  t h e  edge 

A '  > 7.0,  confirming t h e  previous 

Slow convergence raises doubts as to  t h e  r e l i a b i l i t y  of t h i s  statement 
f o r  a/b = 2. 

* 
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conclusion t h a t  t he  antisymmetric buckling configuration f o r  a square p l a t e  

remains unstable. 

r a t i o  2 and 2.45, respectively.  

equilibrium configuration (not shown) becomes possible at t he  value of 

X '  a t  which t h e  antisymmetric buckling configuration becomes s tab le .  This 

secondary b i furca t ion  and t h e  unstable character of t h e  new configuration 

can be shown by considering the  first and second var ia t ions  of t h e  poten t ia l  

energy. The value of A '  associated w i t h  equal po ten t ia l  energies f o r  the 

two stable buckled states is  a l s o  indicated i n  Figure 7. 

Figures 6 and 7 t r e a t  t h e  rectangular p l a t e s  of aspect 

It is  in t e re s t ing  t o  note t h a t  a new 

The poss ib i l i t y  of secondary buckling from the  fundamental mode 

i n t o  a ye t  higher mode (m = n = 2) i s  t r ea t ed  i n  Figure 8, which shows 

the  p '  versus A '  curves of a square p l a t e  subjected t o  plane hydro- 

s t a t i c  pressure after t h e  p l a t e  has been forced t o  buckle in to  t h a t  m o d e .  

Only the two vibrat ion m o d e s  p = q = 1 and p = 2, q = 1 produce nega- 

t i v e  v d u e s  of p ' .  It is  noted t.ht these values remain negative; hence 

fo r  a square p l a t e  the buckling configuration 

T h i s  i s  confirmed by t h e  load-shortening curves of t he  m = n = 1 and 

m = n = 2 buckling configurations shown i n  Figure 5. Since the  two 

curves do not i n t e r sec t  t h e  poss ib i l i ty  of snap-through from t h e  symmetric 

(m = n = 1) buckling configuration into t he  antisymmetric (m = n = 2) 

buckling configuration i s  ruled out. 

m = n = 2 i s  a l s o  unstable. 

The behavior of p l a t e s  subjected t o  uniaxial  edge compression 

i s  r ad ica l ly  d i f f e ren t .  

and is  corroborated i n  Figures 9 and 10. In  t h i s  case even a square 

p l a t e  exhib i t s  a stable antisymmetric (m = 2, n = 1) equilibrium configu- 

r a t ion  when A "  becomes su f f i c i en t ly  large.  This  change-over from 

This has been t r e a t e d  by Stein(18) and others  
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U = 0.30 

Figure 8. Nondimensiond Frequency ~quared-~neti 
Curves for Square Plate under Hydro- 
static Freeewe m = n = 2 Buckling Mode. 
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(a) Nondimensional Frequency Squared-Load Curve 

0 I 2 3 4 5 

V = 0.30 
(b) Nondimensional Load-Shortening Curves 

Figure 10. Rectangular Plate  - Uniaxial W g e  Compression a/b = 2. 
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1 2 3 4 6 

(b) Nondimensional Load-Shortening Curves 

Figure 9. Square Plate - Uniaxial Mge Compression. 
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i n s t a b i l i t y  t o  s t a b i l i t y  i s  again accompanied by the emergence of a new 

unstable configuration (again not indicated i n  t he  figures). 

noted a l so  t h a t  the values of 1" 

t o  secondary buckling) as w e l l  as the values of 

equal po ten t i a l  energies are very much smaller than i n  the  case of hydro- 

s t a t i c  pressure. This  i s  i n  good qual i ta t ive agreement with reported 

t e s t  results. 

It is  

s o  defined (representing lower bounds 

A" associated with 



c m m  V I  

CONCLUSIONS 

. It has been demonstrated tha t  perturbation techniques can be 

used ef fec t ive ly  t o  analyze the  dynamic behavior of rectangular p la tes  

after they have buckled. The ensuing series show sa t i s fac tory  conver- 

gence f o r  a technical ly  s ignif icant  range of the  load parameter. 

N a t u r a l  frequencies of vibration have been shown t o  be ex- 

tremely sens i t ive  t o  buckling amplitudes, displaying t h e  most pronounced 

increase i n  connection with the  symmetric vibratory mode .  For suffi- 

c i en t ly  la rge  load parameters t h i s  mode, which is primarily extensional, 

ceases t o  be associated w i t h  the  longest period of vibration; however, 

it becomes more nearly inextensional as buckling proceeds and may there-  

fore  again re turn  t o  i t s  previous fundamental position. 

The s t a b i l i t y  of higher buckling configurations has been in -  

vestigated bjr studying the r e a l  o r  imaginary character of the frequencies 

of vibration about these configurations. The results indicate that  all 

pla tes  under uniaxial  edge compression, and rectangular p la tes  of su f f i -  

c ien t ly  large aspect r a t i o  under hydrostatic edge pressure, may eventually 

exhibi t  s tab le  secondary buckling modes. 

represent lower bounds t o  "secondary buckling loads" 

poss ib i l i t y  of a sudden snap-through from one buckling configuration in to  

another. This phenomenon had been widely observed before; the  present 

calculations tend t o  conform w i t h  previously reported experimental resu l t s .  

The concomitant load parameters 

which s igni fy  the  
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APPENDIX A 

LIST OF FUNCTIONS - HYDROSTATIC EDGE PRESSURE 

(1) S t a t i c  Functions 

(a) Deflect ion 

i n  which 

with 
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(b) Additional Membrane Stresses 

in which 
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(c) Load Parameter 

in which 
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( c )  Frequency Parameter 

(ii) Vibration Mode p = 2 and q = 1 

( a) Deflect ion 
&J = &4+ E'&''+ p4dlb/ # - - - a  



~ 
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/28 D -66 





* a- -57- 



-58- 

(b) Membrane Stresses 

in which 
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(c) Frequency Parameter 

in which 
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(B) S t a t i c  Buckling Configuration m = 2 and n = 1 

(i) Vibration Mode p = 1 and q = 1 

(a) Deflection 
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(b)  Membrane Stresses 

Ai/- = e$- (0 +€3+ (3) _ - - -  

i n  which 
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wi th .  
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( c )  nequency Parameter 

(ii) Vibration Mode p = 2, q = 1 

(a> Deflection 

- u r - & f * + f ‘ / +  g4&*+ - - - -  
in which 



t 

a= I 
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with 
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( c ) Frequency Brameter 



* 
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( 2 )  
Pqp 

( 3 )  General Algebraic Expressions f o r  p ( O )  and 
P9 



APPENDIX B 

VIBRATIONS OF A SIMPLY SUPPORTED RECTANGULAR 
PLATE UNDER UNIAXIAL EDGE COMPRESSION 

This problem concerns i t s e l f  with t h e  v ib ra t ions  of a sFmply 

supported rec tangular  p l a t e  which i s  subjected t o  prescribed t o t a l  edge 

t h r u s t s  a t  x = 0 and x = a. The d i f f e r e n t i a l  equation governing 

t h e  s t a t i c  de f l ec t ion  of t h e  p l a t e  i s  again 

R M W  - h ( A t i j  + T i j ) W , i j  = 0 

i n  which 

t;j = [-; 
T '  i j  = 1 2 (w,iw,j) 03 -31  

The operator (B.3)  i s  i d e n t i f i e d  w i t h  t h e  same set of equations as i n  

t h e  main body of t h e  paper, except f o r  a change i n  t h e  boundary conditions. 

That i s ,  instead of U'(a,y) and V'(x,b) vanishing, t h e  new boundary 

conditions read 

U'(a ,y> = kl 

V'(x,b) = k2 

i n  which kl and k2 are determined f r o m  

b 

a 
J T '  (x,b)dx = 0 
o w  

Alterna te ly ,  t h e  previous set of  boundary conditions may be used and two 

uniform add i t iona l  t e n s i l e  stresses, one i n  t h e  x d i r e c t i o n  and t h e  
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other i n  the  

muat ions (B.6) and (B.7). 

same differential equation and same boundary conditions as i n  the  

main body of the paper except t& takes the  form of Equation (B.2). 

The method of solution fo r  t h i s  problem is  the  same perturbation 

method presented i n  Chapter I11 and hence it i s  not repeated here. 

y direct ion,  may be superimposed so as t o  s a t i s f y  

I n  the dynamic case, t h i s  problem has the  

The general algebraic expressions f o r  the  s t a t i c  def lect ion,  

the s t a t i c  additional membrane s t resses ,  the load parameter and the 

s t a t i c  addi t ional  membrane displacements a re  as follows : 

A = A o  + €21 + € 4 A + .... (B. 10) 

+ .... (B. 11) 

nn 2 2 

8 
h 

y l  nn 2 mn 2 nn 2 2mn 2nn 2 h2 [-(F) + v(,) + (r) cos - XI s i n  y - 
V' = E '16 (v) a 

i n  which 

W ( l )  = h s i n  % x s i n  nn - y 

W ( 3 )  = h(B4 s i n  % x s i n  3nn y + B4 s i n  - x s i n  

a b 

3mn - 
y) a b a 
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nn 4 
Y 2mn 2nn 4mn 2nx B cos- x cos - cos - x cos - 

a b ' +  I(-$ a n 2  + ( T I  n f i 2 2  1 4 a  b 

- 

2na x cos - cos - 
a b 

mn 4 

[(-I + 3 

4(,) + 
2mn 2 nn 2 2 
a 

4mn 2nn Bqcos - x cos a 
- 

- b 4 

s i n  2mn - x s i n  - 4nn y} 
a b 
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" h -  
a 

h2 = Eh2 -4 
16 

16 - -4 ml7 2 

Note tha t  X now becomes the r a t i o  of the prescribed compression t o  

tha t  required fo r  the i n i t i a l  instabi l i ty .  Let  be the r a t i o  of the 

edge displacement caused by the prescribed edge compression t o  t h a t  

required fo r  the i n i t i a l  i n s t a b i l i t y ;  then ( i s  related t o  Ec by 
b 

The X versus ( curve i s  now the load-shortening curve. The lowest 

buckling mode i s  given by m = a/b and n = 1. 

The general algebraic expressions fo r  the  deflection and the  

frequency parameter of the vibration mode p = q = 1 about the buckled 

+ .... 
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i n  which 

4 
3(1-v2) (f) 

The general  expressions f o r  t he  frequency parameter of t h e  vibrat ion 

modes p = 1, q = 1 and p = 2, q = 1 about t he  buckled configuration 

m = 2, n = 1 are 



-74- 

in which 

b 

3(1-v2) 
B68 = 

4[528(:)4 - 6(E)4] [ (9)2+(a)212 b 

The general expressions for the frequency parameter of the vibration 

modes p = l q = l , p = 2 q = l , p = 2 q = 2  and p = 3 q  = 1 about 

the buckled configuration m = 3, n = 1 are 

+ .... 



e- + '  
~~ 
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6 41 

+ .... 

i n  which 

4 
- 243 ( 1-v2) (g) 
$4 = 

64( t )2[9(g)2  + 5(gl2I  



. 
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For t he  cases of a = b and a = 2b resui ts  are shown in Figures 9 

and 10. 
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